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TECHNICAL PAPER 

NUMERICAL MODELING OF PHYSICAL VAPOR TRANSPORT IN A VERTICAL 
CY LlNDRlCAL AMPOULE, WITH AND WITHOUT GRAVITY 

1. INTRODUCTION 

As pointed out in some of the referenced works [ 1,2] the understanding of the fluid dynamics 
of physical vapor transport in a closed cylindrical ampoule is a fundamental requirement in understanding 
(and thereby possibly controlling) the crystal growth process. The prototypical system which is studied 
here and in previous works is shown in Figure 1. One end of the ampoule is coated with source material 
(A) and is at a higher temperature than that of the other end (which is initially coated with a seed 
material), resulting in a flow of material from the hot end to the cold end due to the difference in 
saturation vapor pressures. There is a “neutral” (or “buffer”) gas (€3) in the ampoule, the presence of 
which influences the fluid dynamics of the system. It is assumed that the temperatures of the endwalls 
are constant, and that there is no deposition upon the sidewalls of the ampoule. In the present study, 
the sidewalls are abiabatic (no heat flux) for some of the calculations and the sidewalls have a fixed 
temperature profile for others. While this system is idealized in many ways, the study of it can give 
rise to a fundamental understanding which can then be applied to more complicated situations (such as 
non-uniform endwall temperature conditions, deposition of material on sidewalls, more complex 
geometry, and other deviations from the prototype system). 

HOT .///////// r 

E I 
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COLD 

Figure 1. Schematic diagram of the prototypical crystal growth situation. 
Contained in the cylindrical ampoule is a gaseous mixture of components 

A (the growth substance) and B (a buffer gas). The gravity vector is 
vertical in the diagram, with direction (up or down) depending 

upon the case considered. 



l’he works by Markham et al. [2] and Greenwell et al. [ 11 were similar to the present study in 
that they are numerical studies of the prototype system of Figure 1. They are based upon the same 
system of equations, except that the present study assumes incompressibility (i.e., the Boussinesq system 
of equations is used). Those previous works pointed out much of the fundamental characteristics of the 
fluid dynamical system, such as the important effects of the fluid’s viscosity, the ampoule’s aspect ratio 
(for fixed Peclet number, defined in the next section), buoyant convection, and the buffer gas. However, 
a very limited range of parameter space was studied. Furthermore, the results of independently varying 
the parameters were not studied in much detail. For example, showing the effect of varying aspect ratio 
while fixing the Peclet number gave the result that for shorter (in the axial direction) ampoules, the 
influence of the sidewalls was greater. However, while varying the aspect ratio, the Reynolds number 
was also varied (shorter ampoules had larger Reynolds number). The extent to which the result depended 
upon Reynolds number, rather than aspect ratio, is not clear. Other points that the present work 
attempts to clarify through the systematic variation of the physical parameters are: (1) the effects of the 
“Stefan wind” upon the onset of buoyant convection, (2) the effects of both the Stefan wind and 
buoyant convection upon the flux of material upon the interface, (3) the effects of different kinds of 
sidewall boundary conditions on temperature when buoyancy effects due to temperature variation are 
considered, and (4) the effects of buoyant convection due to the effects of both temperature and solute. 
The motivation for the present work is to offer an understanding of the fluid dynamics that may aid in 
explaining the differences seen in the results of ground-based and space-based experiments, especially 
those in a joint endeavor of NASA and the 3M Company, in which the author is a co-investigator. 

I I .  EQUATIONS AND SOLUTION TECHNIQUE 

In this study, axisymmetry is assumed. This is discussed in Markham et al. [2], and it is 
justifiable in cases where the buoyant convection is not too large relative to the axisymmetric gradients of 
temperature and solute that are forced by the Stefan flow. The savings in terms of computer and pro- 
gramming resources when compared with a fully three-dimensional model are, of course, considerable. 
It is assumed that the volume of the ampoule does not change - i.e., that the changes in the size of 
layers of growth and source material are very small when compared with the total volume of the 
ampoule. The equations used are those which describe the conservation of momentum, heat, total mass, 
and component A mass in a steady state: 
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where the symbols are defined in Table 1. Note that variations in density due to the presence of both 
solute and temperature variations are included, but these variations influence the flow only through the 
buoyancy term. For quantitative modeling of a physical vapor transport process where large relative 
total density gradients are present, this assumption should not be made. For example, if the total density 
of the gaseous mixture is much larger at one end of the ampoule than the other, the axial velocity at 
that end would have to be smaller in order to conserve mass. (See the results of Greenwell et al. for the 
case when the molecular weights of the two materials are very different.) However, for the purpose of 
pointing out the fundamental behavior of the system with parameter changes, this assumption is certainly 
no worse for many cases than the assumptions about the ideal boundary conditions. The present calcu- 
lations may be regarded as quantitatively valid for cases in which the total change in fluid density does 
not change by more than, about 20 percent. 

TABLE 1. LIST OF SYMBOLS 

a 

DAB 

g 
L 
r 
z 

P 
T 

TO 

TO 

TL 

v, w 
V 
W 

P 

PO 

a 

P 

IC 

V 

x 
$ 
s 

Radius of ampoule. 
Diffusivity of components A and B in the mixture. 

Gravitational acceleration. 
Axial length of ampoule. 
Radial coordinate. 
Axial coordinate. 
Pressure. 
Temperature. 
Reference temperature. 

Temperature at z = 0. 

Temperature at z = L. 

Radial and axial velocity components, respectively. 
Velocity vector. 
One-dimensional solution for axial velocity. 
Thermal expansivity (density factor), 
Solutal density factor. 
Fluid density. 
Reference density. 

Thermal diffusivity. 
Kinematic viscosity. 
Fractional weight concentration of component A. 
Stream function. 
Vorticity. 

3 



The boundary conditions on temperature have already been mentioned; fixed constant tempera- 
tures are assumed on each of the endwalls, and the sidewalls have either no-flux conditions or fixed 
temperature profile conditions, as identified in the description of the results. The boundary conditions 
on component A are of fixed, constant values at each of the endwalls and no flux through the sidewalls. 
No-slip conditions on the boundaries are assumed for the tangential velocity component. Impervious 
sidewalls are assumed, and the endwalls have the boundary condition on the axial velocity component 
as described in Rosenberger [31: 

This boundary condition reflects the conservation of mass as the endwalls are respectively evaporating 
and depositing mass of component A. It is the axial flow induced by these boundary conditions that 
result in the interesting aspects of the system under consideration. 

There exists a well-known one-dimensional solution to the equations, If no variations in the 
radial direction are allowed (and the sidewalls are ignored) the axial velocity, temperature, and solute 
profiles are: 

This velocity magnitude is used as the velocity scale in defining the dimensionless parameters: 

Re = aW/v, Reynolds number 

Pe = LW/DAB , 

Pet = LW/K 

SC = V/DAB , 

Pr = v /x  , 

solutal Peclet number 

thermal Peclet number 

Schmidt number 

Prandtl number 
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Y = L/a > 

Ra, = g(3 ‘F7 xa4/v~L 

Rat = g a  V Ta4/vtcL 

aspect ratio 

solutal Rayleigh number 

thermal Rayleigh number 

where only six of these parameters are independent. (Following the convention of the referenced works, 
the Reynolds and thermal Peclet number shall be taken to be the dependent parameters, unless stated 
otherwise.) For the sake of brevity, the dimensionless equations (which show where the dimensionless 
parameters enter the system of equations as coefficients) are not included here. 

In the solution method, the momentum equations are converted to the vorticity-stream function 
formulation and the equations are finite differenced on a grid that is regular in the radial direction and 
stretched in the axial direction, with finer resolution generally placed near the cold end of the ampoule 
and with increased stretching for larger Pe. Partial time derivatives are included on the left hand side of 
the equations for vorticity, temperature, and solute, and with initial conditions of the one-dimensional 
analytical profiles the system is marched forward in “time” until a steady state is reached. The elliptic 
equation: 

is inverted at each time step by the successive line over-relaxation method to find the stream function 
field after the vorticity field is predicted. (A version of the model exists where the elliptic equation is 
solved by a direct method. This version has been used for comparison purposes. For low-resolution 
cases - 15 grid points in radial direction - the SLOR method is much more efficient. For high- 
resolution cases the direct solver can become more efficient. This is apparently due to the discontinuous 
boundary conditions on axial velocity component where the axial and radial boundaries meet.) From 
the stream function field, the boundary values of vorticity are calculated, and the velocity components 
are computed so that they may be used in the advective terms in the prediction equations for the next 
time step. Centered differencing is used in space, and the alternating-direction-implicit method is used in 
the diffusion terms. (In the case of vorticity, the boundary condition must be extrapolated from 
adjacent points in the AD1 formula. This is actually done on the change in vorticity, so that for a 
steady-state solution this is exact within the finite difference context.) Because only a steady solution 
is desired, the time steps can be different for the variables with highly different diffusion parameters in 
order to enhance the rate of convergence. (It was found that the momentum and solute time steps must 
be the same, because of the coupling of the endwall boundary condition.) 

Note that mass conservation requires the radially integrated axial velocity to be equal on both 
ends of the ampoule. The boundary condition (6) relates this velocity component to the axial gradient 
of component A, upon which no integral constraint can be placed without over-specifying the system. 
(This problem does not arise in the full, compressible system of equations, where there can be a net 
flux into the ampoule at a given time.) The problem was resolved by uniformly adjusting the stream 
function values on the endwalls at each time step, previous to the solution of the elliptic equation for the 
interior stream function field, so that each of the total fluxes are equal to the average of those fluxes 
predicted by the boundary condition (6). One of the necessary criteria used in judging a solution steady 
was that this adjustment asymptotically approached zero. Experience showed that this always occurred, 
although for some highly convective cases the time step had to be reduced for convergence to be 
obtained. 
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I l l .  RESULTS 

A. Zero-Gravity Cases 

The work by Greenwell et al. [ 11 showed many aspects of the flow to be expected when the 
gravitational acceleration is zero. In that work, (1) aspect ratio was varied for fixed Peclet and Schmidt 
numbers when the partial pressures of components A and B were of similar magnitude - i.e., for a 
moderate Peclet number case (0.94), and (2) the case when the partial pressure of B is much smaller 
than that of A (i.e., Peclet number -10) was studied for two aspect ratios. ‘lhat study emphasized that 
significant deviations from the one-dimensional model results can be obtained; in particular, the radial 
profile of deposition upon the growth interface can become non-uniform due to the viscous effects of 
the sidewalls upon the flow. Note that in the Boussinesq model (the current work), temperature is a 
passive component in the system when gravity is zero and that the sidewall boundary condition upon 
temperature has no effect upon the flow and mass flux. 

d 

The first result presented here is the effect of Peclet number (and Reynolds number, since it 
varies along with Pe) upon the mass flux profile on the crystal interface. Figure 2 shows normalized 
flux versus radius for several Peclet numbers, for aspect ratio of one and Sc and Pr both = 1. As noted 
by Greenwell et al. [ 11, the flux varies radially such that the maximum flux is in the center. For the 
case of largest Pe (5.29) shown on that figure, the deviation from the one-dimensional value was a 
maximum of about 20 percent. The effect is monotonic, with increasing radial variation as the Peclet 
number increases. There is very little effect upon the radially integrated mass flux. 

1 .o 

X 3 0.6 
,u. 

0.2 

0 0.25 0.5 0.75 1 .o 
NORMALIZED DISTANCE FROM WALL 

Figure 2. Normalized mass flux on the crystal interface as a function of radial 
distance from the sidewall for varying Pe and for fixed y = 1, Sc = 1, and 

(d) Pe = 2.20, (e) Pe = 0.94. 
Pr = 1, and for no gravity. (a) Pe = 5.29, (b) Pe = 4.37, (c) Pe = 2.74, 
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The effect of aspect ratio for fixed Peclet and Keynolds number was investigated. As previously 
mentioned, Greenwell et al. performed this calculation for fixed Schmidt number rather than for fixed 
Re, and hence when the aspect ratio was smaller the Reynolds number was proportionately larger. It 
was not clear, then, whether increasing the axial length of the ampoule would cause a decreased effect 
upon the flux profile if the viscosity were also proportionately decreased so that Reynolds number were 
fixed. Therefore, calculations were performed in this study for Pe, Re, and Pr all = 1, for aspect ratios 
of 2 and 10. (Sc was 1 and 0.2, respectively, for those two cases.) Although it was hypothesized that a 
different result might be obtained when Re is fixed, it was found that there was more radial variation in 
the mass flux for the case of y = 2, The mass flux at the center of the growth interface was 1.047 for 
y = 2, and 1.016 for y = 10. This calculation validates the conclusions of Greenwell et al., that this 
influence is due to aspect ratio alone, although their physical explanation should be somewhat revised. 
In the present, Boussinesq system - and when there is no gravity - the dimensional size of the ampoule 
has no effect upon the flux profile. (The length scale comes into the equations only through the 
Rayleigh numbers, which are zero here.) Thus, aspect ratio can be equivalently decreased by either 
shortening the axial length or widening the ampoule. In the latter case, contrary to Greenwell et al., 
there is no increase in the dimensional axial velocity. That is, the diffusive equalization of the 
wall-induced radial concentration gradients becomes less effective, but not because of the higher axial 
velocity. It is due simply to the effect of the geometry upon the flux profile in the ampoule. Figure 3 
shows the profiles of axial velocity component for the two cases. Both have maximum fluid speed in 
the center of the ampoule, and in fact the case with y = 10 actually has larger maximum speed (2.00) 
than the case with y = 2 (max = 1.89). However, the case with a relatively long ampoule has more room 
(in the axial direction) to permit diffusion to bring the velocity back towards the 1-D value than does 
the case with the shorter ampoule, and the effect upon the flux profile at the interface is less. (That 
is, in the case of the shorter ampoule the growth interface is closer to the maximum axial velocity in the 
center, and therefore is more influenced by it.) 

AXIAL VELOCITY AXIAL VELOCITY 
CONTOUR INTERVAL = .0002 

Figure 3. Contours of axial velocity (w) for aspect ratios of 2 (left) and 10 (right). 
CONTOUR INTERVAL = .0005 

The other parameters are defined in the text. 
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B. Single-Component Buoyant Convection 

The previous work by Markham et al. [ 2 ]  was of a similar model to that studied here, except that 
it used the compressible equations. That study considered the cases of buoyant convection due to 
solutal and thermal gradients separately, and investigated the effects of varying aspect ratio upon the 
flow. Here the variation of the dimensionless parameters Pe and Rat upon the flow are considered. 
Adiabatic sidewall boundary conditions are assumed unless indicated otherwise. 

It is first noted that these calculations agree with those of Markham et al., that the “gravity- 
hindered” case (i.e., cold end down) is not much different from the zero-gravity case, in terms of the 
mass flux on the growth interface. It is possible, however, for buoyant effects to have a significant 
influence upon the interior flow, as discussed by Markham et al., since there exist radial gradients of 
temperature induced by the Stefan wind and the viscous boundary condition on the sidewall. Note that, 
in the adiabatic sidewall case, the effect of gravity is to inhibit circulation in the direction which would 
increase radial gradients. Hence, the radial gradients in the interior can be significantly reduced by the 
effects of the buoyancy-induced vorticity. The reader is referred to Markham et al. [2] for more details. 

This report now considers the case when the ampoule is vertical, with the hot end down, and the 
density difference due to differing molecular weights of the materials A and B is negligible. (That is, no 
solutal effects on the buoyancy are considered.) Note that the parameters Pe and Rat are not 
independent in a physical crystal growing situation (larger temperature difference induces larger partial 
pressure difference as well as larger total density difference). However, for the purpose of elucidating the 
fluid dynamics of the system they shall be considered to be independent parameters - as, indeed, they 
are in the system of equations being used. The first question to be considered is the effect of the Stefan 
wind upon the transition to buoyant convection. 

Figure 4 shows the normalized total diffusive heat flux across the endwalls as a function of Rat, 
for the cases Pe = 0 and Pe = 2.2. When Pe = 0, one has the classical result that the onset of convection 
is sudden, associated with an instability of the purely diffusive state. When there is a significant Stefan 
flow through the ampoule, there is no sudden onset of convection. This, of course, is due to the radial 
gradients in the “basic state” induced by the viscous effect of the sidewall upon the Stefan flow. These 
radial gradients induce buoyant convection for Rat smaller than the critical value for the Pe = 0 case. 

I I I I 

0.0 0.5L---+- 2000 4000 8000 loo00 

RAYLEIGH NUMBER 

1 
Figure 4. Nusselt number (dimensionless heat flux) as a function of thermal 

Rayleigh number (zero solutal Ra) for the cases of Pe = 0 (no 
crystal growth) and Pe = 2.2, and for aspect ratio = 1. 
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On the other hand, the two curves remain close to each other as Rat is increased, indicating that the 
critical Rayleigh number still has some meaning: It gives an estimate of when the buoyant effects 
become significant, and that the effect of the convection for a super-critical Rayleigh number does not 
deviate much from the classical case. For larger Pe, of course, the deviation becomes greater, although 
the qualitative result is not changed. Figures 5 and 6 show plots of the stream function for varying Rat, 
for the cases Pe = 0.02 and Pe = 2.2, respectively. It may be seen that the onset of buoyant convection 
is rather sudden for the Pe = 0.02 case, and that the strength of the buoyant convection relative to the 
Stefan flow builds up more gradually in the larger Stefan number case. Note that the gravity accelera- 
tion points upward in these plots. Note further that the vorticity induced by gravity in this case is in 
the same direction as the zero-gravity case. That is, the flow is increased in the center, and can actually 
be reversed in direction near the sidewall. 

Fla - azm 

Figure 5. Stream function (the flow is parallel to the contour curves) for fixed Pe = 0.02 and 
varying thermal Rayleigh number. Note the rather sudden increase in the effect of 

buoyant convection as Ra is increased. 

Figure 6. Stream function for fixed Pe = 2.2 and varying Rayleigh number. Note the gradual 
increase in the effect of buoyant convection as Ra is increased. 
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The effect of buoyant convection upon the mass flux at the growth interface, which was fairly 
mild in the cases analyzed by Markham et al., can become quite strong for sufficiently large Rat and 
fixed Pe. Figure 7 shows a plot of mass flux versus radius for Pe = 4.37 and for Rat ranging from about 
1000 to about 4500. For the largest Rat case, the mass flux at  the center is over twice as large as the 
1-D model would predict. 

L 

2.0 ‘ 

X 
3 u. 

1 .o 

1 
0 0.25 0.5 0.75 1 .o 

NORMALIZED DISTANCE FROM WALL 

Figure 7. Normalized mass flux on the crystal interface as a function of radial distance from the 
sidewall for varying thermal Rayleigh number and for fixed Pe = 4.37, aspect ratio = 1, 

Pr = 1, Sc = 1. (a) Rat = 1009, (b) Rat = 2018, (c) Rat = 3027, (d) Rat = 4541. 

The direction of the convective cell is controlled by the direction of the radial gradients in the 
interior of the “basic state” - i.e., the state without gravity. If the sidewall temperature is controlled 
to have a specific profile, the direction of these gradients can differ from those shown in the previous 
paragraphs. For example, the sidewall might be maintained at a rather high temperature, so that deposi- 
tion on the sidewall is discouraged. In that case, most of the axial temperature gradient at the boundary 
is confined to a small distance near the growth interface. Diffusion tends to spread that gradient out in 
the interior, so that the center tends to be cooler than the region near the sidewall (at the same axial 
distance). Hence, the buoyant convection with the hot end down can inhibit deposition in the center, 
instead of encouraging it there. This effect is demonstrated in the results described below. 

Some calculations were made where the sidewall boundary temperature profile was fixed at a 
particular profile communicated by Or. Mark Debe, 3M Company, which is that predicted by a detailed 
finite-element heat transfer model (diffusion only) of the furnace that 3M has used. The conduction 
temperature profile in the interior is shown in Figure 8. The sidewall temperature is approximately 
isothermal from the hot end to a distance very close to the cold end, near which the temperature changes 
very quickly. There is a short distance on the endwall (0.1 of the radius) where there is a temperature 
gradient as well. (The boundary conditions on concentration of A remains constant on the endwall.) 
This particular sidewall temperature profile is one of two considered; the other profile allowed the tem- 
perature to have more variation throughout the length of the ampoule and hence did not have such 
strong gradients near the growth interface. 
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TEMPERATURE 
CONTOUR INTERVAL = 0.1000 

Figure 8. Contours of constant temperature for the diffusion-only field for 
the cases of fixed sidewall temperature profile of Figure 9. 

Before discussing the computational results, it is noted that the actual physical parameters as 
estimated by Dr. Mark Debe of 3M result in a Rayleigh number of about only 0.14. The smallness of 
this number is due to the large diffusivities that were calculated. With such a small Rayleigh number, 
absolutely no buoyant effects are seen. Hence, the results below are for cases of diffusivities much 
lower than those estimated. The effects of buoyant convection can be quite different from the case 
with adiabatic sidewall; Figure 9 shows the results of calculation with fixed temperature profile on the 
sidewall. For this situation, the hot-end-down case gives rise to a reduced mass flux in the center of the 
growth interface, while the “gravity-inhibited” case (cold end down) results in a slight enhancement of 
the mass flux in the center. Since most of the radial gradients are near the growth interface, the con- 
vection is confined to that part of the ampoule. The explanation for this result is obvious. For the 
cold end down case, the flow must be in the direction to make the surfaces of constant density (here, 
isotherms) more nearly horizontal in order to attempt to minimize the potential energy. In the 
“unstable” case (hot end down) the flow is in the opposite direction. Generally, when hot and cold 
fluid is at the same height, the cold fluid will sink and the hot fluid will rise. ‘lhe present results demon- 
strate clearly that the buoyant convection can either enhance or suppress mass deposition in the center 
of the growth interface, depending upon the direction of the induced circulation, which, in turn, depends 
upon the detail of the interior temperature profile. 

6. Thermosolutal Convection 

In the actual crystal-growing situation, the molecular weights of the growth substance and the 
buffer gas can be quite different, resulting in density gradients due to the varying concentrations of the 
two components, For example, the transport of organic compounds (which have large molecular weights) 
through argon is such a system. Here, this report shall consider the case when component A is the heavy 
component, resulting in the density effect due to solute being in the opposite direction as that due to 
heat (i.e., the effect of solute will be to make the fluid heavier at the hot end). Some actual numbers 
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Figure 9. Stream function and mass flux for the cases of fixed sidewall temperature profile. 
Upper left: Stream function for the case of cold end down (Rat = -466). Upper right: 

as a function of distance from the sidewall for the two cases. 
Stream function for the case of hot end down (Rat = 466). Lower: Mass flux 
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for the relative concentrations of the two components in the 3M experiments have not been made avail- 
able to the author; hence, calculations have been made with a broad range of solutal Rayleigh numbers 
for the purpose of studying the fundamental processes. Because of the very large diffusivity of solute, 
however, the actual Rayleigh number is probably quite small, and the cases discussed below show 
buoyancy effects that are much larger than those of the actual experiments. 

First, it is noted that the diffusivity of solute is much larger than that of heat (by a factor of 
about 20), and the reader who is familiar with thermosolutal convection must reverse in his mind the 
role of these two components. For example, when the hot end is down, one has the “salt-finger” con- 
figuration, which here is actually “heat-finger;” the convection will be due to the more slowly-diffusing 
component causing convection which “ignores” the stable stratification set up by the fast-diffusing 
(i.e., non-conservative) component. When the cold end is down, one has the possibility of “oscillatory” 
convection, in which the convection is caused by the unstable gradient of the fast-diffusing component 
(here, solute), which eventually “breaks through” the stratification set up by the slowly-diffusing com- 
ponent. In this latter scenario, once the convection starts, it quickly becomes very non-linear, as the 
stratification set up by the more slowly-diffusing component breaks down quickly. The reader is referred 
to the work by Miller [4] for a further discussion of thermosolutal convection and its possible role in 
crystal growth. 

Second, it is noted that some of the effects of solute on the buoyancy are identical to those 
due to heat when adiabatic sidewalls are assumed. That is, the case when the thermal Rayleigh number 
is small and all buoyancy effects are due to solute is essentially identical to that discussed in the previous 
section. Here, this report shall consider some cases where both Rayleigh numbers are large enough that 
there are significant buoyancy effects due to both components. Only cases with adiabatic sidewalls will 
be considered here. 

Considering first the case with the hot end down (gravity pointing upward in the figures), Figure 
10 shows the flow for a case when the total density difference due to heat is one-half that due to solute. 
Significant buoyant convection may be seen for this case, which has Rat = 3484. The buoyant effects 
may be seen despite the strong stabilizing gradient in solute for two reasons. First, the thermal gradients 
are mostly near the cool end of the ampoule, whereas the solutal gradients are more spread through the 
ampoule. This result may be thought of as a Peclet number effect; i.e., the thermal Peclet number is 
much larger than the solutal Pe. Second, since the diffusivity of solute is relatively large, its buoyancy 
effects are weak compared to that of heat. The strength of this flow is somewhat greater than that of a 
thermal Ra of 1742 and solutal Ra of zero. 

An example of the flow for the case of cold end down is seen in Figure 11 (Ra, = 6969, Kat = 
-1 742). Here, the solutal Rayleigh number must be quite large to overcome the effect of the stabilizing 
thermal gradient, which inhibits convection near the growth interface. The circulation that is present 
is in the upper part of the ampoule. This flow is of similar magnitude to that of solutal Ra, = 5227 
and Rat = 0, but in the latter the circulation is closer to the growth interface and affects the flux on 
the growth interface somewhat more (not shown). 
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Figure 10. Temperature and stream function contours for the case with the hot end down 
and buoyancy effects of a heavy component A included as well as those due to 

temperature. Aspect ratio is 2, Pr = 1, Sc = 0.1, Pe = 1, Rat = 3484, Ra, = -1742. 
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TEMPERATURE STREAM FUNCTION 
CONTOUR INTERVAL = 0.1000 CONTOUR INTERVAL = 0.2000 

Figure 11. As in Figure 10, but for Rat = -1742 and Ra, = 6969 (cold end down). 
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IV. CONCLUSIONS 

‘lhe primary conclusions of the work described herein are as follows: 

1) In zero-gravity convection, the radial gradients in the interior and on the growth interface 
increase with increasing Peclet number. For longer ampoules, this effect decreases. Tnese results are in 
agreement with those of Greenwell et al. [ 11. 

2 )  The effects of buoyant convection depend upon the boundary conditions on temperature (for 
thermally-induced buoyancy). For adiabatic sidewalls, cold end down cases are not significantly different 
than the zero-gravity cases. When the hot end is down, buoyant effects become significant at a Rayleigh 
number near the critical Rayleigh number for buoyant convection in a closed cylinder of similar aspect 
ratio. ‘I he direction of the buoyancy-induced circulation is such that the mass flux on the crystal inter- 
face is enhanced in the center and inhibited near the sidewall. When the temperature profile on the 
sidewall is fixed, the buoyant effects can become quite different, especially when the sidewall is kept 
warm. In that case, the direction of the buoyancy-induced circulation is such that mass deposition is 
inhibited in the center of the interface, and enhanced near the sidewall. 

3 )  The effect of the Stefan wind for non-zero Peclet number is to cause a gradual transition to 
buoyancy-dominated flow, rather than a sudden, “critical” point, but the critical Kayleigh number 
remains useful as an estimate of the point at whch buoyancy effects become significant. 

4) when both thermal and solutal effects on the buoyancy are considered (and when the 
buoyancy effects are in opposite directions), the dominating effect is that due to the more slowly 
diffusiving component (heat). For the cold end down case, the solutal Rayleigh has to be much larger 
than the magnitude of the thermal Kayleigh number in order to overcome the stabilizing effect of the 
thermal gradient. For the hot ena down case, the stable solutal gradient has a relatively small effect on 
the circulation induced by an unstable thermal gradient. That is, the solutal Rayleigh number can be 
much larger than the thermal Ray and buoyant convection will still be present - even though the total 
density difference is “stable” (bottom-heavy). 
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